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@ Power Grid has large number of interacting components

@ Several failure mechanisms: hidden failures, operator error,
shorting of lines due to lack of maintenance, relays
misbehaving due to over-maintenance, erratic consumer
demands, lightning, earthquakes etc

@ Non local effects of failures



o Large blackouts are typically triggered by very few (one or
two) primary events, which are followed by a cascading
sequence of secondary failures

@ Larger disruptions are less probable: probability is a decreasing
power function of event size

@ Larger blackouts though rarer, are much more costlier

@ So it pays to study cascading failures



Cascading Failure Models in Literature

Grid Specific

@ Each failing node increases the load on every other node
uniformly (Dobson, 2004)

@ Branching process: each failing node takes with it a random
number of nodes (Dobson, 2004)

General Networks

@ A node fails if a fraction of its neighbors fail (Watts, 2002)

@ Drop in efficiency of a network because of an imbalance in
flow distribution(Crucitti et al., 2004; Latora et al., 2001)




A Simple Initial System Model

@ Grid is modeled as an
/ \\ undirected graph
@ Nodes are generators and

weights are loads served

\ / @ All nodes have unit capacity
@ Generator is online if load

demand is less than capacity

High level abstraction of the grid



A Simple Initial System Model

@ Edges are not power lines: they represent a load sharing
arrangement

e Equal sharing of offline generator loads: all graph neighbors
take up the offline generator’s load

@ Underlying electrical network is assumed to be capable of
supporting the imposed redundancy



A Simple Failure Model

@ In steady state, the load demand at each node is below rated
capacity

@ Initial load is modeled as independent random variables at
each node

@ Load disturbances increase load at nodes

@ Disturbance is modeled as independent random variables at
each node

@ The load disturbances cause a few generators to go offline

@ The offline generator loads get picked up by graph neighbors
leading to a propagation of the disturbance and potentially
more failures
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Fully Connected Redundancy Graph

@ There is load sharing arrangement between every pair of nodes
@ Intuitively - good for robustness

@ Good for customers - outage probability is least:

Plot of the probability that there is no outage vs the mean number of neighbors,
for different values of the total number of nodes in the network, d . =0.01
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Fully Connected Redundancy Graph

@ Not good under other metrics

@ Sparse network - cascades subside easily

@ Somewhat sparser redundancy graph is good for utilities -
Expected % of population in outage is least:

Plot of the fraction of the population in outage vs the mean number of neighbors,
for different values for the nodes in the network, dman=0,01
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Fully Connected Redundancy Graph

@ Fully connected redundancy graph: either there is no outage
or there is a total blackout:

Number of hodes in the network is 100, dmsan is 0.01
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Analysis Result

@ Fully connected redundancy graph
@ Initial loads at each node is a constant

@ Disturbance is exponential with mean d,,

There is a ditjicas such that, when dp, < dgiticar, cascading failures
subside with probability 1, and when dp, > dgiticar, all nodes fail
with probability 1




Analysis Techniq

Initial distributions

Initial load distribution
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Analysis Technique

Initial distributions

Initial load distribution
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a, = least possible load at the online nodes in stage n

pn = probability that a node which is alive at stage n goes
offline at stage (n+ 1)

D,, = prob. distribution of the re-distributed load at stage n
L, = prob. distribution of the total load at stage n
N = total number of nodes

Nosr = number of nodes which go offline due to the added
disturbance

Load after re-distribution:

Nor

Z Lk:(o)

Lji(l) = Lji(o) + (I;O_w



Nogr ~ Binomial(N, po)

Lo ~ d(ag) and Dy ~ Exponential(dp,)

D, = prob. distribution of the re-distributed load at stage n
L;(0) : fL.‘(O)(X) = fro+D (x| Lo + Do < 1)

Ji

L (0) = 11, (0)(X) = fro+mo (x| Lo + Do = 1)



Analysis

Re-distributed load tends to a constant for large networks

Noff
Z Lki(o)
lim Sy lim Norr /N =0
N—oo o N—oco 1 — Noff/N Nosr
P Po )
= 1-p 1

[e.9]

o 1o = E(Li,(0)) = /_lx v ps (X L0 + Do > 1) dx

@ pp = Pr(,Co + Dy > 1) = / . f£0+D0(X) dx

X=
@ Consequence: Loads at all online nodes at each stage are
independent and identically distributed (iid)




Analysis Proceeds in Stages

Load Re-distributed load
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Analysis Proceeds in Stages

Load Re-distributed load

Probability density function of the load in stage Re-distributed load at the end of stage -
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Recursive Equations Governing System Evolution

_l-ag
O Initialize: pp = e dm , Dy = 1f—(’po(l +dm), a1 = ao,
1—ag D
- Dy
pP1= € lm—al (edm - 1)
l—e dm

@ For n=(2,..., Niterations), do:
If ((an—1 + Dp—1) > 1) and (ap—1 < 1), STOP

else:
(a) dp = an— 1+Dn 1
(b) fn—1 =1+ dp — —2"
L e dm —1

(c) D —, Hn—1
_ld—an D,

(d) pn=—*—1= (e —1)

l—e dm



Results: Evolution of p,

@ From the recursive system:

Plot of p,vsn for different values of dv
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Results: Evolution of a,

@ From the recursive system:

Plot of a vsn, for different values of dm
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Results: Behavior of a Finite Fully Connected System

@ dcriticar for some large enough finite size networks:

a=0.3p=0.9, p_=0.1, p =09, fully connected graph
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Results: d.iticar as a function of initial load a

@ dcriticar and required excess generation capacity:

Plotofd_ _for different values of initial load a,
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Improvements to the System/Failure Model

o Generators rarely trip, they are protected using relays
etc - can be modeled using a probability of failure for the
protective devices associated with each generator

@ The redundancy graph is never fully connected - this
assumption is used only for simplifying analysis. Simulations
can be performed even without this assumption

o Electricity flow does not behave like this - when the exact
topology of the electrical network is known, simulations can
take into account the power flow equations and redistribute
load accordingly

o Load sharing arrangements could change dynamically
with market prices - a market based algorithm can be used
to account for this during simulations



Transmission Grid Topology (FEMA, 1993)

@ Used ESRI shape-files available from NREL (Originally from
FEMA, 1993)
@ Used generator data available from EIA, 2008
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Limitations on Openly Available Data

o Grid topology is somewhat old, but probably not much has
changed

@ Electrical parameters are not available, but exact length and
line voltage are known

@ Unit length impedances and transformer parameters may be
estimated from similar grids elsewhere

@ Generator locations are sometimes available only upto the
county level - then we use the county centroid



Grid + Generating Plants

o After fixing the generator locations to closest grid point
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Detail View
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Power Law in Grid Topology

@ Transmission grid degree distribution

@ Shows an approximate power law behavior:
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Conclusions

Studying cascading failures is important for understanding
large scale blackouts

Developed a simple system and failure model and rigorously
analyzed it

Several improvements are possible to the simple model -
however these will make analysis difficult and necessitate
simulations

Further realism is possible only by considering the actual
transmission network topology

Gathered openly available US transmission grid data

For future: simulate more realistic/complicated algorithms
for load sharing and failure using the grid data
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